Laravel Image Documentation
Release 0.9.0

Folklore,David Mongeau-Petitpas

Aug 16, 2021

Documentation:

Installation
Getting started
Sources

Filters

Javascript Helper

Indices and tables

11

13

CHAPTER 1

Installation

1.1 Dependencies

e Laravel 5.x

* Imagine 0.6.x10.7.x

1.2 Server Requirements

* od or Imagick or Gmagick

* exif - Required to get image format.

1.3 Steps

1- Require the package via Composer in your composer. json.

’$ composer require folklore/image

2- Add the service provider to your app/config/app.php file

’Folklore\Image\ImageServiceProvider::class,

3- Add the facade to your app/config/app.php file

"Imaqe' => Folklore\Image\Facades\Image::class,

4- Publish the configuration file and public files

’s php artisan vendor:publish —--provider="Folklore\Image\ImageServiceProvider"

https://github.com/laravel/laravel
https://github.com/avalanche123/Imagine
http://php.net/manual/en/book.image.php
http://php.net/manual/fr/book.imagick.php
http://www.php.net/manual/fr/book.gmagick.php
http://php.net/manual/en/book.exif.php

Laravel Image Documentation, Release 0.9.0

5- Review the configuration file at config/image.php

2 Chapter 1. Installation

CHAPTER 2

Getting started

This package aims to simplify images manipulation by using the url of an image to determine what filters should be
applied. This way, you don’t need to implements the creation of various image formats, you simply call the url with
the parameters and it automatically generates a new image for you. It also supports static caching so the next request
will serve a static image instead of being handled by Laravel.

This works with two components, the Url Generator and the Image Router. First, you generate an url containing the
filters you want with the Url Generator. The url is generated according to the format declared in config/image.
php (look for url). When you request that url, a route is declared with a pattern corresponding to the url format and
catch the request, applying the filters and responding the new image.

The package provides many built-in filters such as: Thumbnail, Rotation, Colorize, Grayscale, Blur, Negative, etc. ..
and can easily be extended with custom filters.

2.1 Basic Usage

2.1.1 Displaying a thumbnail

// Using the helper
 truel]) }}" />

// Or using the facade
 true]) }}" />

This will translate to: (assuming you haven’t changed the default url format in config/image.php)

If you call this url, the router will catch the request and respond with a cropped 100x100 version of your image.

Laravel Image Documentation, Release 0.9.0

2.1.2 Creating a new thumbnail

// Using the facade

Sthumbnail = Image::make ('path/to/your/image.jpg', [
'width' => 100,
'height' => 100,
'crop' => true

1)

// Using the helper

Sthumbnail = image () ->make ('path/to/your/image.jpg', [
'width' => 100,
'height' => 100,
'crop' => true

1)

// or with the shortcut

Sthumbnail = image ('path/to/your/image.jpg', I
'width' => 100,
'height' => 100,

'crop' => true
1)
// Save the image on the default source (look for ''source'' in ‘config/image.php’)
image () —>save ($Sthumbnail, 'path/to/your/new-image.jpg');

// Or save it on the cloud source
image () —>source ('cloud")
->save ($Sthumbnail, 'path/to/your/new-image.jpg');

2.1.3 Definining a custom filter

While writing all the filters you want in the url () method works, you will probably want to declare a custom filter
that “group” some values together. This way you can reuse it, and instead of remembering all the values, you can
simply apply your filter, by it’s name.

To do this, the simplest way is adding a custom filter as an array. In your AppServiceProvider, add the following
lines in the boot () method.

public function boot ()

{
parent: :boot () ;

/7

Sthis->app['image']->filter ("thumbnail', [
'width' => 100,
'height' => 100,
'crop' => true,

1)

Now you can simply use the filter by it’s name

// Using the helper

(continues on next page)

4 Chapter 2. Getting started

Laravel Image Documentation, Release 0.9.0

(continued from previous page)

// Or using the facade

Or combine with others

’

2.2 Advanced Usage

2.2. Advanced Usage 5

Laravel Image Documentation, Release 0.9.0

6 Chapter 2. Getting started

CHAPTER 3

Sources

In Laravel Image, the place where your images files are stored is called a source. You can have multiple source and
each source can implements a different driver. Currently there is two drivers supported: 1ocal and filesystem.
The last one is based on Laravel Filesystems and it supports all the same drivers (Amazon S3, Ftp, ...). Just specify a
disk that is defined in config/filesystems.php and you are good to go.

3.1 Configuration

Here is the default sources configuration from config/image.php:

| Default Source

This option define the default source to be used by the Image facade. The
source determine where the image files are read and saved.

*/

'source' => 'public',

/
/
| The 1list of sources where you store images.
/
| Supported driver: "local", "filesystem"

/

'sources' => [

(continues on next page)

https://laravel.com/docs/5.5/filesystem

Laravel Image Documentation, Release 0.9.0

(continued from previous page)

'public' => [
// The local driver use a local path on the machine.
'driver' => 'local',

// The path where the images are stored.
'path' => public_path ()
1,

'cloud' => [
// The filesystem driver lets you use the filesystem from laravel.
'driver' => 'filesystem',

// The filesystem disk where the images are stored.
'disk' => 'public',

// The path on the disk where the images are stored. If set to null,
// it will start from the root.
'path' => null,

// Cache the file on local machine. It can be useful for remote files.
'cache' => true,

// The path where you want to put cached files
'cache_path' => storage_path('image/cache')

3.2 Usage

When you interact with the Tmage facade or the image () helper, by default the images are taken from the default
source defined in the config. If you want to use another source, you can do:

Simage = image () ->source ('cloud')->open('path/to/an/image. jpg');
// or
Simage = image () ->source ('cloud')->make ('path/to/an/image.jpg', [

'width' => 100,
'height' => 100
1)

Be carefull the $image object returned by the make () and open () methods implements a save () method. This
method will save on your local disk only. To save an image on a specific source, use:

image () —>source ('cloud')->save ($Simage, 'path/on/the/source/image.jpg');

8 Chapter 3. Sources

CHAPTER 4

Filters

4.1 Configuration

4.2 Usage

Laravel Image Documentation, Release 0.9.0

10 Chapter 4. Filters

CHAPTER B

Javascript Helper

We provide a javascript helper to generate images url in the frontend. The file is published in public/vendor/
folklore/image/image. js. You can simply add the javascript tag in your layout:

<script type="text/javascript" src="{{ asset ('vendor/folklore/image/image.js') }}"></
—script>

The helper is now available as a Laravel Image global variable. You can use it like this:

const url = LaravelImage.url('path/to/image', 300, 300, {
rotate: 90,
1)

// or

const url = LaravelImage.url ('path/to/image', {
width: 300,
height: 300,
rotate: 90,

1)

5.1 Npm package

If you prefer, you can use the npm package:

’$ npm install laravel-image --save

import LaravelImage from 'laravel-image';

const url = LaravellImage.url ('path/to/image', 300, 300, {
rotate: 90,
1)

(continues on next page)

11

Laravel Image Documentation, Release 0.9.0

(continued from previous page)

// or

import { UrlGenerator } from 'laravel-image';

const urlGenerator = new UrlGenerator ({
// custom pattern options

)i

const url =
rotate:

urlGenerator.make ('path/to/image’,
90,

P

300,

300,

{

12

Chapter 5. Javascript Helper

CHAPTER O

Indices and tables

* genindex
* modindex

e search

13

	Installation
	Getting started
	Sources
	Filters
	Javascript Helper
	Indices and tables

